Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Abstract Convergent plate boundaries show sharp variations in orogenic width and extent of intraplate deformation. Analysis of late Cenozoic contractile deformation along the Andean mountain front and adjacent foreland highlights the contrasting degrees of deformation advance toward the plate interior. The retroarc positions of the Andean topographic front (marked by frontal thrust-belt structures) and foreland deformation front (defined by isolated basement block uplifts) range from 300 to 900 km inboard of the trench axis. Over the ~8000 km arcuate length of the Andes (10°N to 55°S), four discrete maxima of inboard deformation advance are spatially co-located with the Peruvian (5°S–14°S) and Pampean (27°S–33°S) zones of flat slab subduction, the subducted Chile Ridge (45°S–48°S), and the anomalously thick Paleozoic stratigraphic wedge of Bolivia (17°S –23°S). The spatial correspondence of retroarc shortening with specific geodynamic configurations demonstrates the mechanical role of flat slab subduction, slab window development, and combined structural and stratigraphic geometries in shaping the orogenic architecture of Cordilleran margins, largely through lithospheric strengthening, weakening, and/or tectonic inheritance.more » « less
-
Abstract The Andes of western Argentina record spatiotemporal variations in morphology, basin geometry, and structural style that correspond with changes in crustal inheritance and convergent margin dynamics. Above the modern Pampean flat‐slab subduction segment (27–33°S), retroarc shortening generated a fold‐thrust belt and intraforeland basement uplifts that converge north of ∼29°S, providing opportunities to explore the effects of varied deformation and subduction regimes on synorogenic sedimentation. We integrate new detrital zircon U‐Pb and apatite (U‐Th)/He analyses with sequentially restored, flexurally balanced cross sections and thermokinematic models at ∼28.5–30°S to link deformation with resulting uplift, erosion, and basin accumulation histories. Tectonic subsidence, topographic evolution, and thermochronometric cooling records point to (a) shortening and distal foreland basin accumulation at ∼18–16 Ma, (b) thrust belt migration, changes in sediment provenance, and enhanced flexural subsidence from ∼16 to 9 Ma, (c) intraforeland basement deformation, local flexure, and drainage reorganization at ∼12–7 Ma, and (d) out‐of‐sequence shortening and exhumation of foreland basin fill by ∼8–2 Ma. Thrust belt kinematics and the reactivation of basement heterogeneities strongly controlled tectonic load configurations and subsidence patterns. Geo/thermochronological data and model results resolve increased shortening and combined thrust belt and intraforeland basement loading in response to ridge collision and Neogene shallowing of the subducted oceanic slab. Finally, this study demonstrates the utility of integrated flexural thermokinematic and erosion modeling for evaluating the geometries, rates, and potential drivers of retroarc deformation and foreland basin evolution during changes in subduction.more » « less
An official website of the United States government
